Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 226
Filtrar
1.
Int J Mol Sci ; 22(22)2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34830210

RESUMO

Misfolding of G protein-coupled receptors (GPCRs) caused by mutations frequently leads to disease due to intracellular trapping of the conformationally abnormal receptor. Several endocrine diseases due to inactivating mutations in GPCRs have been described, including X-linked nephrogenic diabetes insipidus, thyroid disorders, familial hypocalciuric hypercalcemia, obesity, familial glucocorticoid deficiency [melanocortin-2 receptor, MC2R (also known as adrenocorticotropin receptor, ACTHR), and reproductive disorders. In these mutant receptors, misfolding leads to endoplasmic reticulum retention, increased intracellular degradation, and deficient trafficking of the abnormal receptor to the cell surface plasma membrane, causing inability of the receptor to interact with agonists and trigger intracellular signaling. In this review, we discuss the mechanisms whereby mutations in GPCRs involved in endocrine function in humans lead to misfolding, decreased plasma membrane expression of the receptor protein, and loss-of-function diseases, and also describe several experimental approaches employed to rescue trafficking and function of the misfolded receptors. Special attention is given to misfolded GPCRs that regulate reproductive function, given the key role played by these particular membrane receptors in sexual development and fertility, and recent reports on promising therapeutic interventions targeting trafficking of these defective proteins to rescue completely or partially their normal function.


Assuntos
Doenças do Sistema Endócrino/genética , Doenças do Sistema Endócrino/metabolismo , Mutação , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Animais , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Dobramento de Proteína , Transporte Proteico , Receptores Acoplados a Proteínas G/metabolismo , Receptores da Gonadotropina/metabolismo , Transdução de Sinais/genética
2.
Reprod Domest Anim ; 56(2): 351-359, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33259113

RESUMO

Ovarian response of collared peccaries (Pecari tajacu), after hormonal stimulation with gonadotropin association (eCG/hCG), was accessed by both gene expression and follicular development. Thus, collared peccaries (n = 8) were treated with the dose used for sows (swine dose, SWD) or with dose adjusted for peccary's weight (allometric dose, ALD). The gene expression of receptors was evaluated for both gonadotropins (FSHR and LHCGR) and growth factors (proteins codified by TGFßR-1, BMPR1-A and BMPR2 genes) in antral follicles, cortex and corpora haemorrhagica (CH). Five days after gonadotropin injection, all females presented CH. The ovulation rate was similar (p > .05) between SWD (4.00 ± 1.17) and ALD (2.50 ± 0.43) group. The total number of follicles per animal and amounts of small (<3 mm), medium (3-5 mm) and large (>5 mm) follicles was similar among groups. However, SWD produced large follicles heavier than ALD group, as accessed by weight of follicular wall biopsies. Ovarian follicles expressed both gonadotropin and growth factor receptors at levels which are independent from gonadotropin dose. In conclusion, the two gonadotropin doses (SWD and ALD) can be used for ovarian stimulation of collared peccary. Additionally, FSH and growth factors (TGFßR-1, BMPR1-A and BMPR2) receptors are more expressed in the early follicle development, while LH receptor seems to be more important in the final of follicular growth.


Assuntos
Artiodáctilos/fisiologia , Gonadotropina Coriônica/farmacologia , Ovário/efeitos dos fármacos , Animais , Peso Corporal , Gonadotropina Coriônica/administração & dosagem , Feminino , Folículo Ovariano/efeitos dos fármacos , Ovulação/efeitos dos fármacos , Receptores da Gonadotropina/genética , Receptores da Gonadotropina/metabolismo , Receptores de Fatores de Crescimento/genética , Receptores de Fatores de Crescimento/metabolismo
3.
Front Endocrinol (Lausanne) ; 11: 554733, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042017

RESUMO

Establishing reliable prognostic factors as well as specific targets for new therapeutic approaches is an urgent requirement in advanced ovarian cancer. For several tumor entities, the ubiquitously spread scaffold protein ß-arrestin 2, a multifunctional scaffold protein regulating signal transduction and internalization of activated G protein-coupled receptors (GPCRs), has been considered with rising interest for carcinogenesis. Therefore, we aimed to elucidate the prognostic impact of ß-arrestin 2 and its functional role in ovarian cancer. ß-arrestin 2 expression was analyzed in a subset of 156 samples of ovarian cancer patients by immunohistochemistry. Cytoplasmic expression levels were correlated with clinical as well as pathological characteristics and with prognosis. The biologic impact of ß-arrestin 2 on cell proliferation and survival was evaluated, in vitro. Following transient transfection by increasing concentrations of plasmid encoding ß-arrestin 2, different cell lines were evaluated in cell viability and death. ß-arrestin 2 was detected in all histological ovarian cancer subtypes with highest intensity in clear cell histology. High ß-arrestin 2 expression levels correlated with high-grade serous histology and the expression of the gonadotropin receptors FSHR and LHCGR, as well as the membrane estrogen receptor GPER and hCGß. Higher cytoplasmic ß-arrestin 2 expression was associated with a significantly impaired prognosis (median 29.88 vs. 50.64 months; P = 0.025). Clinical data were confirmed in transfected HEK293 cells, human immortalized granulosa cell line (hGL5) and the ovarian cancer cell line A2780 in vitro, where the induction of ß-arrestin 2 cDNA expression enhanced cell viability, while the depletion of the molecule by siRNA resulted in cell death. Reflecting the role of ß-arrestin 2 in modulating GPCR-induced proliferative and anti-apoptotic signals, we propose ß-arrestin 2 as an important prognostic factor and also as a promising target for new therapeutic approaches in advanced ovarian cancer.


Assuntos
Proliferação de Células , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/metabolismo , beta-Arrestina 2/metabolismo , Adulto , Biomarcadores Tumorais/metabolismo , Sobrevivência Celular , Feminino , Células HEK293 , Humanos , Estimativa de Kaplan-Meier , Pessoa de Meia-Idade , Neoplasias Ovarianas/patologia , Prognóstico , Receptores da Gonadotropina/metabolismo
4.
Gen Comp Endocrinol ; 298: 113557, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32687934

RESUMO

Sturgeons are being used in aquaculture because wild populations are now endangered due to overfishing for caviar. A challenge in working with sturgeon as an aquacultured species is its long and slow reproductive development. Reproduction is a hormonally regulated process that involves hierarchical signaling between the brain, pituitary gland, and gonads. In an effort to better understand the hormonal regulation of sturgeon reproduction, we have cloned the Russian sturgeon (st), Acipenser gueldenstaedtii, luteinizing hormone receptor (stLHR) and follicle stimulating hormone receptor (stFSHR) and measured their expression from previtellogenic to mature ovarian follicles. Sturgeon LHR and FSHR expression was elevated in early-vitellogenic and mature follicles compared with pre-vitellogenic and mid-vitellogenic follicles, and only LHR expression increased during late-vitellogenesis. Recombinant sturgeon FSH and LH both activated sturgeon LHR and FSHR in a cAMP reporter assay. Further molecular characterization of these receptors was accomplished by in silico modeling and cAMP reporter assays using heterologous recombinant gonadotropins from human and piscine species. There was no apparent trend in heterologous LH and/or FSH activation of the sturgeon LHR or FSHR. These data suggest that permissive activation of LHR and FSHR are a consequence of some yet undetermined biological characteristic(s) of different piscine species.


Assuntos
Regulação da Expressão Gênica , Receptores da Gonadotropina/genética , Receptores da Gonadotropina/metabolismo , Sequência de Aminoácidos , Animais , Clonagem Molecular , Feminino , Humanos , Modelos Moleculares , Filogenia , Domínios Proteicos , Receptores do FSH/química , Receptores do FSH/genética , Receptores do FSH/metabolismo , Receptores da Gonadotropina/química , Receptores do LH/química , Receptores do LH/genética , Receptores do LH/metabolismo , Federação Russa
5.
Mol Biol Rep ; 47(5): 3281-3290, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32253704

RESUMO

Gonadotropin-inhibitory hormone (GnIH) is an RFamide peptide, and its role in reproduction is well studied from fish to mammals, but very few reports are available about the function of GnIH during larval development. In this study, we examined the GnIH and GnIH receptors (GnIHRs) expression from embryogenesis to adult stage and tissue-specific expression in adult Catla catla using quantitative real-time (qRT) PCR. The qRT PCR analysis of GnIH mRNA during ontogenetic development showed the increasing trend from early developmental stages to the adult stage with the highest expression in 24 months fish. However, the expression of two GnIH receptors, GnIHR1 and GnIHR2 also increased from larval stages to the adults with a peak at 17 days post-hatching, while GnIHR3 showed the higher mRNA expression during embryogenesis and then decreasing gradually. Tissue distribution analysis of GnIH showed the highest mRNA expression of GnIH in the brain, followed by gonads of both the sexes. GnIHR1 and GnIHR2 were also highly expressed in the brain and gonads of both the sexes, while GnIHR3 showed the highest expression in gonads of both the sexes without any expression in the brain. These results suggest that the brain is the primary site of action for GnIH, GnIHR1 and GnIHR2, while gonads for GnIHR3.


Assuntos
Carpas/embriologia , Carpas/genética , Neuropeptídeos/genética , Animais , Carpas/metabolismo , Cyprinidae/genética , Cyprinidae/metabolismo , Feminino , Expressão Gênica/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Glicoproteínas/metabolismo , Gonadotropinas/metabolismo , Hormônios Hipotalâmicos/genética , Hormônios Hipotalâmicos/metabolismo , Larva/genética , Larva/metabolismo , Masculino , Neuropeptídeos/metabolismo , Receptores da Gonadotropina/genética , Receptores da Gonadotropina/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
6.
Biol Reprod ; 102(6): 1290-1305, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32149334

RESUMO

Vaspin, visceral-adipose-tissue-derived serine protease inhibitor, is involved in the development of obesity, insulin resistance, inflammation, and energy metabolism. Our previous study showed vaspin expression and its regulation in the ovary; however, the role of this adipokine in ovarian cells has never been studied. Here, we studied the in vitro effect of vaspin on various kinase-signaling pathways: mitogen-activated kinase (MAP3/1), serine/threonine kinase (AKT), signal transducer and activator of transcription 3 (STAT3) protein kinase AMP (PRKAA1), protein kinase A (PKA), and on expression of nuclear factor kappa B (NFKB2) as well as on steroid synthesis by porcine ovarian cells. By using western blot, we found that vaspin (1 ng/ml), in a time-dependent manner, increased phosphorylation of MAP3/1, AKT, STAT3, PRKAA1, and PKA, while it decreased the expression of NFKB2. We observed that vaspin, in a dose-dependent manner, increased the basal steroid hormone secretion (progesterone and estradiol), mRNA and protein expression of steroid enzymes using real-time PCR and western blot, respectively, and the mRNA of gonadotropins (FSHR, LHCGR) and steroids (PGR, ESR2) receptors. The stimulatory effect of vaspin on basal steroidogenesis was reversed when ovarian cells were cultured in the presence of a PKA pharmacological inhibitor (KT5720) and when GRP78 receptor was knocked down (siRNA). However, in the presence of insulin-like growth factor type 1 and gonadotropins, vaspin reduced steroidogenesis. Thus, vaspin, by activation of various signaling pathways and stimulation of basal steroid production via GRP78 receptor and PKA, could be a new regulator of porcine ovarian function.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ovário/fisiologia , Serpinas/farmacologia , Transdução de Sinais/fisiologia , Suínos/fisiologia , Animais , Células Cultivadas , Técnicas de Cocultura , Relação Dose-Resposta a Droga , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Proteínas de Choque Térmico , Subunidade p52 de NF-kappa B/genética , Subunidade p52 de NF-kappa B/metabolismo , Ovário/citologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores da Gonadotropina/genética , Receptores da Gonadotropina/metabolismo , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Serpinas/administração & dosagem
7.
Gen Comp Endocrinol ; 285: 113276, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31536722

RESUMO

Reproduction in vertebrates is controlled by the brain-pituitary-gonad axis, where the two gonadotropins follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh) play vital parts by activating their cognate receptors in the gonads. The main purpose of this work was to study intra- and interspecies ligand promiscuity of teleost gonadotropin receptors, since teleost receptor specificity is unclear, in contrast to mammalian receptors. Receptor activation was investigated by transfecting COS-7 cells with either Fsh receptor (mdFshr, tiFshr) or Lh receptor (mdLhr, tiLhr), and tested for activation by recombinant homologous and heterologous ligands (mdFshßα, mdLhßα, tiFshßα, tiLhßα) from two representative fish orders, Japanese medaka (Oryzias latipes, Beloniformes) and Nile tilapia (Oreochromis niloticus, Cichliformes). Results showed that each gonadotropin preferentially activates its own cognate receptor. Cross-reactivity was detected to some extent as mdFshßα was able to activate the mdLhr, and mdLhßα the mdFshr. Medaka pituitary extract (MPE) stimulated CRE-LUC activity in COS-7 cells expressing mdlhr, but could not stimulate cells expressing mdfshr. Recombinant tiLhßα, tiFshßα and tilapia pituitary extract (TPE) could activate the mdLhr, suggesting cross-species reactivity for mdLhr. Cross-species reactivity was also detected for mdFshr due to activation by tiFshßα, tiLhßα, and TPE, as well as for tiFshr and tiLhr due to stimulation by mdFshßα, mdLhßα, and MPE. Tissue distribution analysis of gene expression revealed that medaka receptors, fshr and lhr, are highly expressed in both ovary and testis. High expression levels were found for lhr also in brain, while fshr was expressed at low levels. Both fshr and lhr mRNA levels increased significantly during testis development. Amino acid sequence alignment and three-dimensional modelling of ligands and receptors highlighted conserved beta sheet domains of both Fsh and Lh between Japanese medaka and Nile tilapia. It also showed a higher structural homology and similarity of transmembrane regions of Lhr between both species, in contrast to Fshr, possibly related to the substitution of the conserved cysteine residue in the transmembrane domain 6 in medaka Fshr with glycine. Taken together, this is the first characterization of medaka Fshr and Lhr using homologous ligands, enabling to better understand teleost hormone-receptor interactions and specificities. The data suggest partial ligand promiscuity and cross-species reactivity between gonadotropins and their receptors in medaka and tilapia.


Assuntos
Oryzias/metabolismo , Receptores do FSH/metabolismo , Receptores do LH/metabolismo , Sequência de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Feminino , Hormônio Foliculoestimulante/química , Hormônio Foliculoestimulante/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Hormônio Luteinizante/química , Hormônio Luteinizante/metabolismo , Masculino , Modelos Moleculares , Receptores do FSH/genética , Receptores da Gonadotropina/metabolismo , Receptores do LH/genética , Transdução de Sinais
8.
Biol Reprod ; 102(4): 773-783, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31882999

RESUMO

Gonadotropin hormones and their receptors play a central role in the control of male and female reproduction. In recent years, there has been growing evidence surrounding the complexity of gonadotropin hormone/receptor signaling, with it increasingly apparent that the Gαs/cAMP/PKA pathway is not the sole signaling pathway that confers their biological actions. Here we review recent literature on the different receptor-receptor, receptor-scaffold, and receptor-signaling molecule complexes formed and how these modulate and direct gonadotropin hormone-dependent intracellular signal activation. We will touch upon the more controversial issue of extragonadal expression of FSHR and the differential signal pathways activated in these tissues, and lastly, highlight the open questions surrounding the role these gonadotropin hormone receptor complexes and how this will shape future research directions.


Assuntos
Receptores da Gonadotropina/metabolismo , Transdução de Sinais/fisiologia , Animais , Hormônio Foliculoestimulante/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Humanos , Hormônio Luteinizante/metabolismo
9.
J Nutr Biochem ; 71: 132-143, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31349120

RESUMO

Consumption of unhealthy, energy-dense palatable food during early age leads to obesity in children and the onset of obesity during childhood has a profound effect on the reproductive health of women. In this study, the mechanism underlying diet-induced obesity on ovarian dysfunction was studied by exposing rats to cafeteria diet (CAFD) for two different durations. For that purpose, 21-day-old female Sprague Dawley rats were fed ad libitum with a standard diet (control group) and a cafeteria diet (CAFD group) for a period of 20 weeks (20 W) and 32 weeks (32 W). We observed obesity, hyperglycemia, hyperlipidemia, hyperleptinemia and hypoadiponectinemia in CAFD fed groups. Hyperinsulinemia, hypergonadotrophism, hypertestosteronemia and hyperprogesteronemia were observed in the 20 W-CAFD group. Conversely, in the 32 W-CAFD group hypersecretion declined to hyposecretion. The levels of estradiol remained low during both time periods. The duration of estrous cycle was extended in the CAFD fed rats. The ovary weight was higher in the 20 W-CAFD fed rats but it was drastically reduced over a longer duration cafeteria diet feeding. In the 20 W-CAFD fed rats, the protein levels of LHR, StAR, CYP11A1, 3ß-HSD and 17ß-HSD were increased but FSHR and CYP19A1 levels were decreased in the ovary. On the other hand, gonadotropin receptor and the protein levels of steroidogenic enzymes were decreased in the ovary of 32 W-CAFD fed rats. We conclude that the duration of energy-dense diet consumption has differential regulatory mechanism in altering the ovarian steroid production. In 20 W-CAFD fed rats, hypergonadotropic condition was observed whereas, 32 W-CAFD consumption induced hypogonadotropic hypogonadism.


Assuntos
Dieta/efeitos adversos , Obesidade/etiologia , Doenças Ovarianas/metabolismo , Doenças Ovarianas/fisiopatologia , Ração Animal , Animais , Ciclo Estral/fisiologia , Feminino , Gonadotropinas/sangue , Lipídeos/sangue , Obesidade/metabolismo , Obesidade/fisiopatologia , Tamanho do Órgão , Obesidade Pediátrica , Ratos Sprague-Dawley , Receptores da Gonadotropina/metabolismo , Esteroides/metabolismo , Fatores de Tempo
10.
Gen Comp Endocrinol ; 282: 113200, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31199926

RESUMO

Gonadotropin-inhibitory hormone (GnIH) is a multifunctional hypophysiotropic neurohormone and has a stimulatory role in the control of reproduction in the grass puffer. To clarify the neuroendocrine mechanisms underlying the effect of changes in water temperature on reproduction in fish, we previously revealed that, in parallel to gonadal regression, both low and high temperature significantly decreased the expressions of the genes encoding kisspeptin (kiss2), kisspeptin receptor (kiss2r), gonadotropin-releasing hormone 1 (gnrh1) in the brain and gonadotropin (GTH) subunits (fshb and lhb) in the pituitary of sexually mature male grass puffer. In this study, we examined the changes in expression of gnih and GnIH receptor gene (gnihr) in the brain and pituitary along with the genes for growth hormone (gh) and prolactin (prl) in the pituitary of male grass puffer exposed to low temperature (14 °C), normal temperature (21 °C, as initial control) and high temperature (28 °C) conditions for 7 days. The levels of gnih and gnihr mRNAs were significantly decreased in both low and high temperature conditions compared to normal temperature in the brain and pituitary. Similarly, the gh mRNA levels were significantly decreased in both low and high temperature conditions. The prl mRNAs showed no significant changes at high temperature, whereas drastically decreased at low temperature possibly by dysfunctional cold stress. Taken together, the present results suggest that, in addition to the inhibitory effect of temperature changes on the Kiss2/GnRH1/GTH system, the suppression of GnIH/GH system may also be involved in the termination of reproduction by high temperature at the end of breeding season.


Assuntos
Cruzamento , Gonadotropinas/genética , Hormônio do Crescimento/genética , Hormônios Hipotalâmicos/genética , Prolactina/genética , Receptores da Gonadotropina/genética , Takifugu/genética , Temperatura , Animais , Peso Corporal , Encéfalo/metabolismo , Temperatura Baixa , Regulação da Expressão Gênica , Gonadotropinas/metabolismo , Hormônio do Crescimento/metabolismo , Temperatura Alta , Hormônios Hipotalâmicos/metabolismo , Masculino , Hipófise/metabolismo , Prolactina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores da Gonadotropina/metabolismo , Estações do Ano
11.
Gen Comp Endocrinol ; 280: 123-133, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31009604

RESUMO

Receptors for follicle-stimulating hormone (Fshr), luteinizing hormone (Lhcgr1 and Lhcgr2) and androgens (Ara and Arb) transduce the hormonal signals that coordinate spermatogenesis, but the factors that regulate the abundance of these transducers in fish testes remain little-understood. To mend this paucity of information, we first determined changes in transcript abundance for these receptors (fshr, lhcgr1, ara and arb) during spermatogenesis induced by human chorionic gonadotropin (hCG) injection in the eel, Anguilla australis. We related our findings to testicular production of the fish androgen, 11-ketotestosterone (11-KT), and to the levels of the transcripts encoding steroidogenic acute regulatory protein (star) and 11ß-hydroxylase (cyp11b), and subsequently evaluated the effects of hCG or 11-KT on mRNA levels of these target genes in vitro. Testicular 11-KT production was greatly increased by hCG treatment, both in vivo and in vitro, and associated with up-regulation of star and cyp11b transcripts. In situ hybridization indicated that testicular fshr mRNA levels were higher in the early stages of hCG-induced spermatogenesis, while lhcgr1 transcripts were most abundant later, once spermatids were observed. In vitro experiments further showed that hCG and its steroidal mediator 11-KT significantly increased fshr transcript abundance. These data provide new angles on the interactions between gonadotropin and androgen signaling during early spermatogenesis. Increases in levels of 11-KT following hCG injection elevated testicular fshr mRNA levels augmenting Fsh sensitivity in the testis. This evidence is suggestive of a positive feedback loop between gonadotropins and 11-KT that may be key to regulating early spermatogenesis in fish.


Assuntos
Anguilla/genética , Regulação da Expressão Gênica , Receptores Androgênicos/genética , Receptores da Gonadotropina/genética , Testículo/metabolismo , Androgênios/metabolismo , Anguilla/sangue , Animais , Gonadotropina Coriônica/administração & dosagem , Gonadotropina Coriônica/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Androgênicos/metabolismo , Receptores do FSH/genética , Receptores do FSH/metabolismo , Receptores da Gonadotropina/metabolismo , Receptores do LH/genética , Receptores do LH/metabolismo , Espermatogênese/efeitos dos fármacos , Espermatogênese/genética , Esteroide 11-beta-Hidroxilase/genética , Esteroide 11-beta-Hidroxilase/metabolismo , Testículo/efeitos dos fármacos , Testosterona/análogos & derivados , Testosterona/sangue
12.
Gen Comp Endocrinol ; 276: 30-36, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30796897

RESUMO

A relaxin-like gonad-stimulating peptide (RGP) of starfish Patiria (Asterina) pectinifera is the first identified invertebrate gonadotropin for final gamete maturation. Recently, we found three orthologs of RGP in the class Asteroida; PpeRGP in P. pectinifera, AamRGP in Asterias amurensis, and AjaRGP in Aphelasterias japonica. In this study, nine kinds of RGP derivatives with exchanged each A- and B-chain were synthesized chemically to analyze the interaction of RGP with its receptor. Among these RGP derivatives, PpeRGP and its chimeric RGPs with B-chains from AamRGP or AjaRGP could induce oocyte maturation and ovulation in P. pectinifera ovaries. In contrast, other RGP derivatives were failed to induce spawning in P. pectinifera ovaries. Circular dichroism spectra of PpeRGP were similar to those of chimeric RGPs with the B-chains from AamRGP or AjaRGP. Furthermore, the predicted three-dimensional structure models of the B-chains from RGP derivatives have almost the same conformation. These findings suggest that the B-chain of PpeRGP is involved in binding to its receptor. Thus, it is likely that the A-chain of AamRGP or AjaRGP disturbs the binding of the PpeRGP B-chain to its receptor.


Assuntos
Asterina/metabolismo , Gonadotropinas/metabolismo , Gônadas/metabolismo , Receptores da Gonadotropina/metabolismo , Relaxina/farmacologia , Sequência de Aminoácidos , Animais , Asterina/efeitos dos fármacos , Feminino , Técnicas de Maturação in Vitro de Oócitos , Modelos Moleculares , Ovulação/efeitos dos fármacos , Relaxina/química
13.
Gen Comp Endocrinol ; 272: 83-92, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30529311

RESUMO

Despite tremendous importance of follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh) as primary controllers of reproductive development, information on the expression profiles of the genes encoding gonadotropin subunits and gonadotropin receptors (Fshr and Lhr) in wild eels are essentially non-existent. This study investigated pituitary fshb and lhb mRNA levels and ovarian fshr and lhr mRNA levels of wild shortfinned eels, Anguilla australis at different stages of oogenesis. Protein expression of Fsh in the pituitary was also quantified and visualized using slot blot and immunohistochemistry. Pituitary fshb and lhb mRNA levels showed a differential expression pattern, fshb mRNA levels increasing significantly from the perinucleolus (PN) to the oil droplet stage (OD) before slightly decreasing (not significantly) in the early vitellogenic stage (EV). A similar trend was observed in relative Fsh protein levels analyzed by slot blot and immunohistochemistry, but this trend was not reflected in the plasma levels of sex steroids. In contrast, pituitary lhb mRNA levels increased significantly from the PN to EV stage. A higher expression of Fsh at both mRNA and protein levels in the pituitary of eels at the OD stage compared to other investigated stages suggests that synthesis of Fsh production in the pituitary may reach a peak at the OD stage. In the ovary, transcript abundances of fshr and lhr gradually increased during previtellogenic follicle growth, but markedly and significantly increased thereafter. Taken together, our data suggest i) that Fsh release may be very limited, or absent, prior to onset of puberty in shortfinned eels and ii) that Lh is not functionally important in this fish during the EV stage.


Assuntos
Hormônio Foliculoestimulante/metabolismo , Gonadotropinas/metabolismo , Hormônio Luteinizante/metabolismo , Receptores da Gonadotropina/metabolismo , Anguilla/metabolismo , Animais , Feminino , Nova Zelândia , Maturidade Sexual
14.
Cell Tissue Res ; 375(3): 743-754, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30377784

RESUMO

We previously demonstrated that female Runx3 knockout (Runx3-/-) mice were anovulatory and their uteri were atrophic and that Runx3 mRNA was expressed in granulosa cells. To clarify how Runx3 regulates folliculogenesis and ovulation, we examine the effects of Runx3 knockout on the gene expression of growth factors associated with folliculogenesis and enzymes associated with steroidogenesis. In Runx3-/- mouse ovaries, the numbers of primary and antral follicles were lower than those in wild-type (wt) mice at 3 weeks of age, indicating that the loss of Runx3 affects folliculogenesis. The expression of genes encoding activin and inhibin subunits (Inha, Inhba and Inhbb) was also decreased in ovaries from the Runx3-/- mice compared with that in wt mice. Moreover, the expression of the genes Cyp11a1 and Cyp19a1 encoding steroidogenic enzymes was also decreased. In cultured granulosa cells from 3-week-old mouse ovaries, Cyp19a1 mRNA levels were lower in Runx3-/- mice than those in wt mice. Follicle-stimulating hormone (FSH) treatment increased Cyp19a1 mRNA levels in both wt and Runx3-/- granulosa cells in culture but the mRNA level in Runx3-/- granulosa cells was lower than that in wt ones, indicating that granulosa cells could not fully function in the absence of Runx3. At 3 weeks of age, gonadotropin α subunit, FSHß subunit and luteinizing hormone (LH) ß subunit mRNA levels were decreased in Runx3-/- mice. These findings suggest that Runx3 plays a key role in female reproduction by regulating folliculogenesis and steroidogenesis in granulosa cells.


Assuntos
Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Células da Granulosa/metabolismo , Organogênese , Esteroides/biossíntese , Animais , Subunidade alfa 3 de Fator de Ligação ao Core/deficiência , Estradiol/biossíntese , Feminino , Hormônio Foliculoestimulante/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Células da Granulosa/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Organogênese/efeitos dos fármacos , Progesterona/biossíntese , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores da Gonadotropina/genética , Receptores da Gonadotropina/metabolismo
15.
Reproduction ; 156(6): R195-R208, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30390613

RESUMO

Our understanding of G protein-coupled receptor (GPCR) signalling has significantly evolved over the past decade, whereby signalling not only occurs from the plasma membrane but continues, or is reactivated, following internalisation in to endosomal compartments. The spatial organisation of GPCRs is thus essential to decode dynamic and complex signals and to activate specific downstream pathways that elicit the appropriate cellular response. For the gonadotrophin hormone receptors, membrane trafficking has been demonstrated to play a significant role in regulating its signal activity that in turn would impact at physiological and even pathophysiological level. Here, we will describe the developments in our understanding of the role of 'location' in gonadotrophin hormone receptor signalling, and how these receptors have unveiled fundamental mechanisms of signal regulation likely to be pertinent for other GPCRs. We will also discuss the potential impact of spatially controlled gonadotrophin hormone receptor signalling in both health and disease, and the therapeutic possibilities this new understanding of these receptors, so key in reproduction, offers.


Assuntos
Endocitose , Receptores Acoplados a Proteínas G/metabolismo , Receptores da Gonadotropina/metabolismo , Reprodução , Transdução de Sinais , Animais , Membrana Celular , Endossomos/metabolismo , Humanos , Ligantes , Transporte Proteico
16.
Theriogenology ; 122: 102-108, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30245332

RESUMO

The aim of this work was to evaluate factors affecting ovum capture in superovulated buffaloes, by comparing the morphological features of pre-ovulatory follicles and oocytes, the intrafollicular and plasmatic steroid profile, as well as the expression of genes involved in cumulus expansion and steroid cascade in granulosa cells (GCs) and that of genes involved in contraction-relaxation of the oviduct between superovulated and synchronized buffaloes. Italian Mediterranean Buffalo cows were either synchronized by Ovsynch (n = 25) and superovulated (n = 10) with conventional FSH protocol and sacrificed 18 h after last GnRH. Antral follicular count, recovery rate and oocyte quality were recorded, and plasma and follicular fluid were collected for steroid profile determination. In addition, in 10 animals (5/group), GCs were collected to analyse the mRNA expression of gonadotropin receptors (LHR and FSHR) and genes involved in steroid synthesis, as the cytochrome P450 family 19 (CYP19A1) and the steroidogenic acute regulatory protein (STAR). Moreover, oviducts were collected to evaluate the mRNA expression of estrogen receptor 1 (ER1) and the progesterone receptor (PGR), the vascular endothelial growth factor (VEGF) and the VEGF receptors, i.e. the kinase insert domain receptor (FLK1) and the fms related tyrosine kinase 1 (FLT1). No differences were recorded in steroids plasma concentration between synchronized and superovulated animals whereas intrafollicular E2 and P4 concentrations decreased in superovulated group (63.2 ±â€¯10.6 vs 30.3 ±â€¯5.9 ng/mL of E2 and 130.1 ±â€¯19.8 vs 71.6 ±â€¯8.5 ng/mL of P4, respectively in synchronized and superovulated animals; P < 0.05). Interestingly, both the recovery rate (85.7% vs 56.6%, respectively in synchronized and in superovulated animals; P < 0.05) and the percentage of oocytes exhibiting proper cumulus expansion (75% vs 28.1%, respectively in synchronized and in superovulated animals; P < 0.01) decreased in superovulated animals. In addition, the expression of FSHR and CYP19A1 increased while the expression of STAR in GCs decreased (P < 0.05). Finally, in superovulated buffaloes a decreased expression of PGR, ER1, VEGF and its receptor FLK1 in the oviduct was observed. The results suggest that the exogenous FSH treatment impairs steroidogenesis, affecting both the oviduct and the ovarian function, accounting for the failure of ovum capture in superovulated buffaloes.


Assuntos
Búfalos , Recuperação de Oócitos/veterinária , Folículo Ovariano/citologia , Superovulação , Animais , Aromatase/metabolismo , Receptor alfa de Estrogênio/metabolismo , Sincronização do Estro , Feminino , Hormônio Foliculoestimulante/efeitos adversos , Hormônio Foliculoestimulante/farmacologia , Fosfoproteínas/metabolismo , Receptores da Gonadotropina/metabolismo , Receptores de Progesterona/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
17.
Minerva Ginecol ; 70(5): 539-548, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30226027

RESUMO

The gonadotropin hormones, follicle stimulating hormone and luteinizing hormone, are essential for reproduction. They work in concert to control multiple aspects of gonadal function to ultimately produce meiotically competent and fertilizable gametes, provide the optimal endometrial environment and support for implantation and maintain pregnancy via progesterone production throughout the first trimester of pregnancy. These complex and multidimensional functions are mediated via the gonadotropin hormone receptors, luteinizing hormone receptor and follicle stimulating hormone receptor, Class A G protein-coupled receptors (GPCR), which couple to multiple G protein-dependent and independent signal pathways to control these physiological processes. Over the last two decades, a plethora of experimental evidence has shown that GPCRs can associate to form dimers and oligomers. This association provides a means of mediating the diverse functional requirements of a single receptor subtype and for the gonadotropin hormone receptors, has been shown to alter the pharmacology and signal activation profile of these receptors. This review will detail the historical and current evidence detailing the formation of gonadotropin hormone receptor homomers and heteromers. We will discuss the functional insights gained from in vitro and in vivo studies, and the potential impact in modulating reproductive health and disease.


Assuntos
Hormônio Foliculoestimulante/metabolismo , Hormônio Luteinizante/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Feminino , Humanos , Gravidez , Multimerização Proteica , Receptores da Gonadotropina/metabolismo , Reprodução/fisiologia , Transdução de Sinais/fisiologia
18.
Minerva Ginecol ; 70(5): 525-538, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29999287

RESUMO

Gonadotropin receptors include the follicle stimulating hormone receptor (FSHR) and the luteinizing hormone/choriogonadotropin receptor (LHCGR), both belong to the G protein-coupled receptor (GPCR) superfamily and are essential to reproduction. FSHR is activated by follicle stimulating hormone (FSH) while LHCGR is activated by either luteinizing hormone (LH) or choriogonadotropin (CG). Upon ligand binding, gonadotropin receptors undergo conformational changes that lead to the activation of the heterotrimeric G protein, resulting in the production of different second messengers. Gonadotropin receptors can also recruit and bind ß-arrestins. This particular class of scaffold proteins were initially identified to mediate GPCRs desensitization and recycling, but it is now well established that ß-arrestins can also initiate Gs-independent signaling by assembling signaling modules. Furthermore, new advances in structural biology and biophysical techniques have revealed novel activation mechanisms allowing ß-arrestins and G proteins to control signaling in time and space. The ability of different ligands to preferentially elicit G- or ß-arrestin-mediated signaling is known as functional selectivity or biased signaling. This new concept has switched the view of pharmacology efficacy from monodimensional to multidimensional. Biased signaling offers the possibility to separate therapeutic benefits of a drug from its adverse effects. The proof of concept that gonadotropin receptors can be subjected to biased signaling is now established. The challenge will now be the design of molecules that can specifically activate beneficial signaling pathway at gonadotropin receptors while reducing or abolishing those leading to side effects. Such strategy could for instance lead to improved treatments for infertility.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Receptores da Gonadotropina/metabolismo , beta-Arrestinas/metabolismo , Animais , Gonadotropina Coriônica/metabolismo , Desenho de Fármacos , Humanos , Ligantes , Hormônio Luteinizante/metabolismo , Receptores do FSH/metabolismo , Receptores do LH/metabolismo , Transdução de Sinais/fisiologia
19.
Gen Comp Endocrinol ; 263: 21-31, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29660307

RESUMO

Follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh), secreted from pituitary, stimulate gonadal function by binding to their cognate receptors FSH receptor (FSHR), and LH/choriogonadotropin receptor (LHCGR). Rohu (Labeo rohita) is a commercially important seasonal breeder freshwater fish species, but till date, the regulation of expression of gonadotropins and their receptors gene during different phases of annual reproductive cycle has not been investigated. We envisaged the critical role of these molecules during seasonal gonadal development in this carp species. We cloned full- length cDNAs of fshra and lhcgrba from rohu testis using RACE (Rapid amplification of cDNA ends) and analyzed their expression along with fsh and lh by quantitative real time PCR (qRT-PCR) assay at various gonadal developmental stages of the annual reproductive cycle. Full-length rohu fshra and lhcgrba cDNA encodes 670 and 716 amino acids respectively, and in adult fish, they were widely expressed in brain, pituitary, gonad, liver, kidney, head kidney, heart, muscle, gill, fin, eye and intestine. In male, both fsh and fshra transcripts showed high level of expression during spermatogenesis, however, in female, expression level was found to be higher in the fully grown oocyte stages. The expression of rohu lh and lhcgrba mRNA increased with increment of gonadosomatic index and showed highest level during spermiation stage in male and fully matured oocyte stage in female. These results together may suggest the involvement of fshra and lhcgrba in regulating function of seasonal gonadal development in rohu.


Assuntos
Cyprinidae/genética , Receptores da Gonadotropina/genética , Animais , Clonagem Molecular , Cyprinidae/metabolismo , DNA Complementar/isolamento & purificação , DNA Complementar/metabolismo , Feminino , Perfilação da Expressão Gênica/veterinária , Gônadas/metabolismo , Masculino , Hipófise/metabolismo , Receptores do FSH/metabolismo , Receptores da Gonadotropina/isolamento & purificação , Receptores da Gonadotropina/metabolismo , Receptores do LH/genética , Receptores do LH/metabolismo , Reprodução/genética , Análise de Sequência de DNA/veterinária , Transcriptoma
20.
Handb Exp Pharmacol ; 245: 1-39, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29063275

RESUMO

Gonadotropin receptors belong to the highly conserved subfamily of the G protein-coupled receptor (GPCR) superfamily, the so-called Rhodopsin-like family (class A), which is the largest class of GPCRs and currently a major drug target. Both the follicle-stimulating hormone receptor (FSHR) and the luteinizing hormone/chorionic gonadotropin hormone receptor (LHCGR) are mainly located in the gonads where they play key functions associated to essential reproductive functions. As any other protein, gonadotropin receptors must be properly folded into a mature tertiary conformation compatible with quaternary assembly and endoplasmic reticulum export to the cell surface plasma membrane. Several primary and secondary structural features, including presence of particular amino acid residues and short motifs and in addition, posttranslational modifications, regulate intracellular trafficking of gonadotropin receptors to the plasma membrane as well as internalization and recycling of the receptor back to the cell surface after activation by agonist. Inactivating mutations of gonadotropin receptors may derive from receptor misfolding and lead to absent or reduced plasma membrane expression of the altered receptor, thereby manifesting an array of phenotypical abnormalities mostly characterized by reproductive failure and/or abnormal or absence of development of secondary sex characteristics. In this chapter we review the structural requirements necessary for intracellular trafficking of the gonadotropin receptors, and describe how mutations in these receptors may lead to receptor misfolding and disease in humans.


Assuntos
Receptores da Gonadotropina/metabolismo , Animais , Membrana Celular/metabolismo , Endocitose , Retículo Endoplasmático/metabolismo , Humanos , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...